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We analyse the dynamics of a Cournot duopoly with heterogeneous players to investigate the effects of
micro-founded differentiated products demand on stability. The present study, which indeed modifies and
extends Zhang et al. (2007) (Zhang, J., Da, Q., Wang, Y., 2007. Analysis of nonlinear duopoly game with
heterogeneous players. Economic Modelling 24, 138–148) and Tramontana, F., (2010) (Tramontana, F.,
2010. Heterogeneous duopoly with isoelastic demand function. Economic Modelling 27, 350–357), reveals
that a higher degree of product differentiation may destabilise the market equilibrium. Moreover, we show
that a cascade of flip bifurcations may lead to periodic cycles and ultimately chaotic behaviours. Since a
higher degree of product differentiation implies weaker competition, then a theoretical implication of our
findings, that also constitute a policy warning, is that a fiercer (weaker) competition tends to stabilise (desta-
bilise) the unique positive Cournot–Nash equilibrium.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The present study analyses the dynamics of a Cournot duopoly
within the framework developed by the recent literature (see Bischi
et al., 2010) that deals with the dynamics of nonlinear oligopoly
models based on expectations different from the simple naïve forma-
tion mechanism implicit in the original model by Cournot (1838). In
particular, we consider differentiated products and focus on the
dynamic role played by the degree of product differentiation (see
the original contributions by Chamberlin, 1933, and Hotelling, 1929,
for the notion of differentiated goods and services).

While Cournot (1838) considered a duopoly with a single homoge-
neous product, more recently the economic literature offered duopoly
models with (horizontal) differentiated products (see, e.g., Dixit,
1979; Singh and Vives, 1984)which allow goods and services to be sub-
stitutes or complements, in models with a standard linear demand
structure.

As is known, the forecasts as regards the behaviour of the competitor
in a duopoly game are crucial in order tomake the optimal (rational) out-
put choice. The pioneering work by Cournot (1838) introduced the first
formal theory of oligopoly in economics, and treated the case with naive
expectations, so that in every step each player assumes the last values
taken by competitors without any forecasts about their future reactions.
x: +39 010 209 55 36.
ail.com (L. Fanti),
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Recently, several works have considered more realistic mecha-
nisms through which players form their expectations about decisions
of competitors, and have shown that the Cournot model may lead to
periodic cycles and deterministic chaos. While several articles (see,
e.g., Agiza, 1999; Agliari et al., 2005, 2006; Bischi and Kopel, 2001;
Kopel, 19962) assume that both duopolists adopt the same decision
mechanism as regards expectation formation (i.e. the case of homo-
geneous players), another branch of literature exists where firms
are assumed to have heterogeneous expectations (Agiza and
Elsadany, 2003, 2004; Agiza et al., 2002; Den Haan, 2001; Leonard
and Nishimura, 1999; Tramontana, 2010; Zhang et al., 2007). In par-
ticular, the present paper is strictly related to Zhang et al. (2007)
and Tramontana (2010) and analyses a Cournot duopoly game with
heterogeneous players. However, in contrast with these two works,
which consider a market for a single homogenous product, we intro-
duce a micro-economic founded demand structure of differentiated
products, which may be substitutes or complements between them.
Other differences that distinguish the present study with those of
the existing literature are the following: (i) production costs are
assumed, as in Tramontana (2010), to be linear to simplify the analy-
sis, while Zhang et al. (2007) assume non-linear (quadratic) costs,
and (ii) a system of linear demand, as in Zhang et al. (2007), exists,
while Tramontana (2010) assumes, following Puu (1991), a non-
linear (isoelastic) demand system.
2 An interesting extension of the model by Kopel (1996) is Wu et al. (2010).
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3 This term again follows Zhang et al. (2007) and Tramontana (2010).
4 Notice that the intensity of the reaction by the bounded rational firm is given by

αq1, t, which is proportional to the size of the firm.
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The horizontal differentiated duopoly considered here introduces
microeconomic foundations proposed, among many others, by
Singh and Vives (1984). Note that while the investigation of the static
Cournot differentiated duopoly has produced several works (see
Appendix A), less attention has been paid to the study of the dynam-
ics in such a model. We aim therefore to fill this gap within the liter-
ature on nonlinear dynamic oligopolies.

The main result of the present analysis that an increase in product
differentiation may destabilise the unique Cournot–Nash equilibri-
um: despite the rise in profits that an increase in the extent of product
differentiation can lead to, it may also cause unpredictable market
fluctuations. Moreover, from a mathematical point of view, we show
that the destabilisation of the fixed point can occur through a flip bifur-
cation and also that a cascade of flip bifurcations may lead to periodic
cycles and deterministic chaos.

The paper is organised as follows. Section 2 develops the model with
micro-foundations of the differentiated products demand and presents
the two-dimensional dynamic system of a duopoly game with hetero-
geneous expectations (bounded rational and naïve). Section 3 studies
both the steady state and dynamics for Cournot differentiated duopoly,
showing explicit parametric conditions of the existence, local stability
and bifurcation of the market equilibrium. Section 4 presents numerical
simulations of the analytical findings, while also showing that complex
behaviours through standard numerical tools (i.e., bifurcation diagrams,
Lyapunov exponents, shape of the strange attractors and basins of at-
traction, sensitive dependence on initial conditions and fractal dimen-
sion of the chaotic attractor). Section 5 concludes.

2. The model

Since in the present study we concentrate on the effects on stabil-
ity of horizontal product differentiation in a Cournot duopoly, it is of
importance to set up the microeconomic foundations of the differen-
tiated commodity setting and clarify the economic reasons why we
assume specific demand and cost functions.

We assume the existence of an economy with two types of agents:
firms and consumers. There exists a duopolistic sector with two firms,
firm 1 and firm 2, and every firm i produces differentiated goods and ser-
vices, whose price and quantity are given by pi and qi, respectively, with
i={1, 2}.

The inverse demand functions of products of variety 1 and 2 (as a
function of quantities) come from the maximisation by the represen-
tative consumer of the following utility function:

U qi; qj
� �

¼ aiqi þ ajqj−
1
2

βiq
2
i þ βjq

2
j þ 2dqiqj

� �
ð1Þ

subject to the budget constraint p1q1+p2q2+y=M, and are given by
the following equations (see Appendix B for details):

p1 q1; q2ð Þ ¼ a−q1−dq2; ð2:1Þ

p2 q1; q2ð Þ ¼ a−q2−dq1: ð2:2Þ

Following Correa-López and Naylor (2004) and Fanti and
Meccheri (2011), we assume that firm i produces output of variety i
through the following production function with constant (marginal)
returns to labour: qi=Li, where Li represents the labour force
employed by the ith firm. Firms face the same (constant) average
and marginal wage cost w≥0 for every unit of output produced.
Therefore, the firm i's cost function is linear and described by:

Ci qið Þ ¼ wLi ¼ wqi: ð4Þ

Profits of firm i in every period can be written as follows:

πi qi; qj
� �

¼ pi qi; qj
� �

qi−wqi ¼ pi qi; qj
� �

−w
h i

qi: ð5Þ
From the profit maximisation by firm i={1, 2}, marginal profits
are obtained as:

∂π1 q1; q2ð Þ
∂q1

¼ a−2q1−dq2−w; ð6:1Þ

∂π2 q1; q2ð Þ
∂q2

¼ a−2q2−dq1−w: ð6:2Þ

The reaction or best reply functions of firms 1 and 2 are computed
as the unique solution of Eqs. (6.1) and (6.2) for q1 and q2, respective-
ly, and they are given by:

∂π1 q1; q2ð Þ
∂q1

¼ 0⇔q1 q2ð Þ ¼ 1
2

a−w−dq2½ �; ð7:1Þ

∂π2 q1; q2ð Þ
∂q2

¼ 0⇔q2 q1ð Þ ¼ 1
2

a−w−dq1½ � ð7:2Þ

Since information in the market are usually incomplete, expecta-
tions play an important role when the mechanics of a duopoly game
are under scrutiny. For instance, if firms do not know the output of
the concurrent firm in advance, they are not able to compute the out-
put that maximises their profits and then every firm can adopt vari-
ous mechanisms of expectations formation about the quantity
offered by the rival. In this respect, we follow Zhang et al. (2007)
and Tramontana (2010) and consider heterogeneous firms in the
sense that they are assumed to adopt different mechanisms to decide
the output in each time period. In particular, we assume the following
heterogeneous expectations: firm 1 (2) has bounded rational (naïve)
expectations about the quantity to be produced in the future by the
rival. Bounded rationality implies that the “bounded rational”3 firm
increases/decreases its output according to the information given by
marginal profits obtained in the last period depending on a certain
degree or intensity of reaction. This adjustment mechanism with re-
spect to which firms decide to increase (decrease) the price if margin-
al profits are positive (negative), has been suggested and called
"myopic" by Dixit (1986). In contrast with the first one, the second
firm is a naive player in the sense that it expects that rival will pro-
duce in the future a quantity equal to those produced in the last peri-
od. This adjustment mechanism, according to which the last values
are taken by the competitors without estimation of their future reac-
tions, dates back to the first formal theory of oligopoly by Cournot
(1838).

Therefore, given these types of expectations formation mecha-
nisms, the two-dimensional system that characterises the dynamics
of the economy is the following:

q1;tþ1 ¼ q1;t þ αq1;t
∂π1;t

∂q1;t
q2;tþ1 ¼ q2;t

;

8<
: ð8:1Þ

where α>0 is a coefficient that “tunes” the speed of adjustment of
firm 1's quantity at time t+1 with respect to a marginal change in
profits when q1 varies at time t.4 Using Eqs. (7.1) and (7.2), the
two-dimensional system that characterises the dynamics a differenti-
ated Cournot duopoly can alternatively be written as follows:

q1;tþ1 ¼ q1;t þ αq1;t a−2q1;t−dq2;t−w
h i

q2;tþ1 ¼ q2;t ¼
a−w−dq1;t

2

:

8><
>: ð8:2Þ



5 This can be ascertained by looking at the (negative) sign of the coefficient of d2 in
Eq. (16).

6 Broadly speaking, a−w>0 captures the size of market demand.
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From Eq. (8.2) it can be seen that the degree of horizontal product
differentiation, d, plays a twofold role on marginal profits of firm 1
and then on the quantity it will produce in the future. Indeed, for
any 0bdb1 (−1bdb0), a rise in the absolute value of d, (i.e. the de-
gree of substitutability (complementarity) increases): (1) directly re-
duces (increases) the weight of the reply of firm 1 because marginal
profits reduce (increase) since the degree of competition becomes
lower (higher), and (2) indirectly tends to reduce (increase) the reac-
tion of firm 1 through a negative (positive) effect on the production of
firm 2. Definitely, a rise in the (absolute value) of d at time t has a
potentially uncertain effect on the quantity produced by the bounded
rational firm at time t+1.

3. Local stability analysis of the unique positive Cournot–Nash
equilibrium

From an economic point of view we are only interested to the
study of the local stability properties of the unique positive output
equilibrium, which is determined by setting q1, t+1=q1, t=q1 and
q2, t+1=q2, t=q2 in Eq. (8.2) and solving for (non-negative solutions
of) q1 and q2, that is:

q�1 ¼ q�2 ¼ q� ¼ a−w
2þ d

; ð9Þ

where wba should hold to ensure q*>0.
The Jacobian matrix evaluated at the equilibrium point given by

Eq. (9) is the following:

J ¼ J11 J12
J21 J22

� �
¼

2þ d−2α a−wð Þ
2þ d

−dα a−wð Þ
2þ d

− d
2

0

0
B@

1
CA: ð10Þ

The trace and determinant of the Jacobian matrix Eq. (10) are re-
spectively given by:

T :¼ Tr Jð Þ ¼ J11 þ J22 ¼ 2þ d−2α a−wð Þ
2þ d

: ð11Þ

D :¼ Det Jð Þ ¼ J11J22−J12J21 ¼ −αd2 a−wð Þ
2 2þ dð Þ ; ð12Þ

so that the characteristic polynomial of Eq. (10) is:

G λð Þ ¼ λ2−tr Jð Þλþ det Jð Þ; ð13Þ

whose discriminant is Q :=[Tr(J)]2−4Det(J).
We now study the local stability properties of the Cournot–

Nash equilibrium Eq. (9) by means of well-known stability
conditions for a system in two dimensions with discrete time
(see, e.g., Gandolfo, 2010; Medio, 1992), which are generically
given by:

ið Þ F :¼ 1þ T þ D > 0
iið Þ TC :¼ 1−T þ D > 0
iiið Þ H :¼ 1−D > 0

:

8<
: ð14Þ

The violation of any single inequality in Eq. (15), with the
other two being simultaneously fulfilled leads to: (i) a flip bifur-
cation (a real eigenvalue that passes through −1) when F=0;
(ii) a fold or transcritical bifurcation (a real eigenvalue that
passes through +1) when TC=0; (iii) a Neimark–Sacker bifurca-
tion (i.e., the modulus of a complex eigenvalue pair that passes
through 1) when H=0, namely Det(J)=1 and |Tr(J)|b2. For the
particular case of the Jacobian matrix Eq. (10), the stability con-
ditions stated in Eq. (14) can be written as follows:

ið Þ F ¼
−α a−wð Þ 4þ d2

� �
þ 4 2þ dð Þ

2 2þ dð Þ > 0

iið Þ TC ¼ α 2−dð Þ a−wð Þ
2

> 0

iiið Þ H ¼ 2 2þ dð Þ þ α a−wð Þd2
2 2þ dð Þ > 0

:

8>>>>>>><
>>>>>>>:

ð15Þ

From Eq. (15) it can easily be seen that while conditions (ii) and (iii)
are always fulfilled, condition (i) can be violated. Therefore, the Cour-
not–Nash equilibrium q1*=q2*=q* can loose stability through neither
a transcritical nor Neimark–Sacker bifurcation. The stability condition (i)
in Eq. (15) represents a region F in the (α, d) plane, i.e., the speed of ad-
justment and the degree of horizontal product differentiation, bounded
by the economic model assumption α>0 and −1bdb1. Therefore, the
following equation B(d), i.e. the numerator of F in Eq. (15), represents a
bifurcation curve at which the positive equilibrium point q1*=q2*=q*
looses stability through a flip (or period-doubling) bifurcation, that is:

B dð Þ :¼ −α a−wð Þ 4þ d2
� �

þ 4 2þ dð Þ ¼ 0: ð16Þ

A simple inspection of Eq. (16) leads to the following remarks.

Remark 1. The bifurcation curve B(d) is hump-shaped5 and inter-
sects the horizontal axis at d=d1

F :=C−K and d=d2
F :=C+K, where

C :¼ 2
α a−wð Þ ; K :¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α2 a−wð Þ2 þ 2α a−wð Þ þ 1

q
α a−wð Þ

: ð17Þ

The fixed point q* is locally asymptotically stable (B(d)>0) when
d1
Fbdbd2

F (see Fig. 1). Moreover, there are no real solutions of B(d) for
d when α(a−w)>2.41 (see Appendix A for details).

Therefore, when the combination of the speed of adjustment and
the market size6 is fairly high, i.e. α(a−w)>2.41 (resp., low, i.e.
α(a−w)b0.8), the Cournot–Nash equilibrium Eq. (9) of the dynamic
system Eq. (8.2) is locally unstable (locally asymptotically stable)
irrespective of the degree of product differentiation d, while within
the intermediate range 0.8bα(a−w)b2.41, the degree of product
differentiation crucially matters for stability. However, we must in-
vestigate whether the real solutions (if any) for d are feasible from
an economic point of view in such a case.

In particular, it is now of importance to establishwhether the stabil-
ity region is reduced when products of variety 1 and 2 tend to become
either substitutes or complements (i.e., whether the loss of stability of
the market equilibrium may occur only through a reduction in the de-
gree of substitutability between products), because our preceding
mathematical analysis has revealed that the Cournot–Nash equilibrium
Eq. (9) may occur through either an increase or decrease in the value of
the parameter d.

In other words, in order to have an interesting economic interpreta-
tion of the results, it is crucial to know whether and how the bifurcation
values d=d1

F and d=d2
F are included between−1 and 1.

By using the Budan–Fourier theorem (see Appendix A for details)
we are able to establish that the introduction of a higher differentia-
tion between products has always a clear-cut stability effect, as the
following proposition claims.

Proposition 1. Let 0.8bα(a−w)b2.41 hold. Then, starting from a
stability situation, when the parameter d is reduced (i.e., the degree
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of product differentiation is increased), the Cournot–Nash equilibri-
um looses stability through a flip bifurcation when d=d1

F.

Proof. See Appendix A.
From an economic point of view, Proposition 1 shows that when a

firm attempts to increase profits by reducing the degree of competi-
tion through an increase in product differentiation, it also tends to
destabilise the market equilibrium. Moreover, ceteris paribus as
regards the size of market demand, a−w, the higher the speed of ad-
justment α is the closer to unity (perfect substitutability) d is.

Therefore, depending on the relative size of both the market de-
mand and speed of adjustment, we have the following three cases:

Case (1). α(a−w)b0.8. There exists two real solutions of B(d) for
d, namely d1

Fb−1 and d2
F>1. The Cournot–Nash equilibrium

Eq. (9) is locally asymptotically stable irrespective of the degree
of product market differentiation.
Case (2). α(a−w)>2.41. No real solutions exist of B(d) for d. The
Cournot–Nash equilibrium Eq. (9) is locally unstable irrespective
of the degree of product market differentiation.
Case (3.1). 0.8bα(a−w)b2.41 and0bαb 2

a−w. Then−1bd1Fb0. The
Cournot–Nash equilibrium Eq. (9) is locally asymptotically stable for
any 0bd1Fb1. It looses stability through a flip bifurcation when the
degree of products of variety 1 and 2 become complements.
Case (3.2). 0.8bα(a−w)b2.41 and α ¼ 2

a−w. Then d1
F=0. The

Cournot–Nash equilibrium Eq. (9) is locally asymptotically stable
for any 0bd1Fb1. It looses stability through a flip bifurcation when
the degree of product differentiation increases up to the point in
which the two firms act as two separate monopolists in their own
market.
Case (3.3). 0.8bα(a−w)b2.41 andα > 2

a−w. Then 0bd1Fb1. The Cour-
not–Nash equilibrium Eq. (9) looses stability through a flip bifurca-
tion when products of variety 1 and 2 from perfect substitutes
(homogeneous) tend to become less substitutable between them.

4. A numerical illustration

The main purpose of this section is to show that the qualitative
behaviour of the solutions of the duopoly game with heterogeneous
Fig. 1. Bifurcation diagram for d. Initial conditions: q1, 0=0.03 and q1, 0=0.01.
player described by the dynamic system Eq. (8.2), can generate, in ad-
dition to the local flip bifurcation and the resulting emergence of a
two-period cycle, complex behaviours. To provide some numerical
evidence for the chaotic behaviour of system Eq. (8.2), we present
several numerical results, including bifurcations diagrams, strange
attractors, Lyapunov exponents, sensitive dependence on initial
conditions and fractal structure.

According with the aim of the paper, we take the degree of product
differentiation d as the bifurcation parameter, and choose the following
parameter set only for illustrative purposes: α=2.2, a=2 and w=1,
which represents Case (3.3).

Fig. 1 depicts the bifurcation diagram for d. The figure clearly shows
that an increase in the extent of product differentiation (i.e., the param-
eter dmoves from 1 to values smaller than 1), implies that the map Eq.
(8.2) converges to a fixed point for 1>d>0.2287. Starting from this in-
terval, inwhich the positive fixed point Eq. (9) of systemEq. (8.2) is sta-
ble, Fig. 1 shows that the equilibrium undergoes a flip bifurcation at
d1
F=0.2287. Then, a further increase in product differentiation implies

that a stable two-period cycle emerges for 0.2287>d>−0.2. As long
as the parameter d reduces a four-period cycle, cycles of highly period-
icity and a cascade of flip bifurcations that ultimately lead to unpredict-
able (chaotic) motions are observed when products are complements.
As an example, the phase portrait of Fig. 2 depicts the strange attractor
and basin of attraction for d=−0.46.

Another numerical tool useful in order to determine the constellation
of parameters for which trajectories converge to periodic cycles, quasi-
periodic and chaotic attractors, is the study of the largest Lyapunov
exponent as a function of the parameter of interest (which, in the
present paper, is assumed to be the degree of product differentiation,
d). As is known, there exists evidence for quasi periodic behaviour
(chaos) when the largest Lyapunov exponent is zero (positive). Let Le1
be the largest Lyapunov exponent of our system. Then, for the above pa-
rameter constellation and initial conditions, in Fig. 3 we plot Le1 against
the parameter d (see, e.g., Fanti and Manfredi, 2007). In order to better
characterise the largest exponent from a quantitative point of view,
and take account for the fact that a long (periodic or aperiodic) transient
can exist, the dynamical system is left to evolve for t=105 time units
and then the Lyapunov exponents are calculated during a time of
order t=105. This allows to unambiguously detect the existence of
chaotic motions in the range of values of d with respect to which Le1
is steadily positive. Moreover, the Lyapunov dimension evaluated
Fig. 2. Phase portrait (d=−0.46).

image of Fig.�2


Fig. 4. Sensitivity dependence to initial conditions (q1 versus time). Initial conditions:
q1, 0=0.03 and q2, 0=0.01 (red line), and q1, 0=0.03001 and q2, 0=0.01001 (blue
line). (d=−0.46).

Fig. 3. Largest Lyapunov exponent for −0.5bdb−0.15 (one million iterations).
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according to the well-known Kaplan–Yorke conjecture (see Kaplan and
Yorke, 1979), corresponding to d=−0.46 is DL=1.175.7

As is known, the sensitivity dependence to initial conditions is a
characteristic of deterministic chaos. In order to show the sensitivity
dependence to initial conditions of system Eq. (8.2), we have comput-
ed two orbits of the variable q1 whose coordinates of initial conditions
differ by 0.00001. Fig. 4 depicts the orbits of q1 with initial conditions
q1, 0=0.03 and q2, 0=0.01, and q1, 0=0.03001 and q2, 0=0.01001 at
d=−0.46. As expected, the orbits rapidly separate each other, thus
suggesting the existence of deterministic chaotic.
5. Conclusions

We analysed the dynamics of a differentiated Cournot duopoly
with firms' heterogeneous expectations, and investigated the effects
of a micro-founded differentiated product demand. The main result
is that a higher degree of product market differentiation may destabi-
lise the unique Cournot–Nash equilibrium, while also showing the ex-
istence of deterministic chaos. This result suggests a twofold effect:
while an increase in the extent of product differentiation tends to
increase profits, it may also cause the loss of stability of the equilibri-
um through a flip bifurcation. In this sense, our findings constitute a
policy warning8 for firms that want to differentiate their products in
order to reduce competition.
7 The Lyapunov dimension is computed as DL≤sþ ∑s
k¼1λk

λsþ1j j , where λk is the kth Lya-
punov exponent, s is the largest number for which ∑k=1

s λk>0 and λ1+λ2+…+
λs+1b0 (see Medio, 1992).

8 Note that in the present study we do not state the normative implications that
unpredictable fluctuations triggered by the players' behaviour are either privately or
socially harmful. Indeed, although the common sense always seems to attribute a neg-
ative connotation to unpredictable fluctuations, it has been shown that in some cases
chaotic fluctuations can be preferable to stable trajectories towards a stationary state
(see Huang, 2008; Matsumoto, 2003). In order to investigate whether chaos is desir-
able or not it would be necessary (as made by Matsumoto (2003) as regards a pure ex-
change economy with a discrete-time price adjustment process) to calculate some
statistical properties (see also Day, 1994) of the quantity chaotic dynamics (e.g., the
density function of chaotic trajectory) to obtain an average measure of long-run wel-
fare (e.g. profits or social welfare), to be compared with the same measure evaluated
at the equilibrium, but this interesting exercise is beyond the scope of this paper. In
this sense, however, chaotic fluctuations can be not undesirable. We thank an anony-
mous referee for having raised this interesting point.
The economic intuition behind the result is that the higher the
degree of product differentiation, the lower the level of competition
and the higher the output produced by each firm whatever the quan-
tity produced by the rival. The larger amount of output produced by
each single firm in comparison with the case of homogenous products
is responsible for the loss of stability of the market equilibrium and
the resulting complex dynamic events. An interesting theoretical
implication is that a fiercer (weaker) competition tends to stabilise
(destabilise) the economy.

However, we ask ourselves whether and how this result is robust
to the underlying economic theoretical extensions (for instance,
when returns to labour are decreasing (i.e. quadratic wage costs) or
the labour market is unionised). The answers to these questions are
left for future research.

Appendix A Proof of Proposition 1

The proof of Proposition 1 amounts to simply show that (i) at
most only the root d=d1

F can be included in the interval (−1 , 1),
and (ii) d=d2

F>1 always holds.
Let us begin by providing a standard version of the Budan–Fourier

theorem.

Theorem 1. Budan–Fourier theorem

For any real number a and b such that b>a, let F(a)≠0 and F(b)≠0
be real polynomials of degree n, and C(x) denote the number of sign
changes in the sequence {F(x), F′(x), F″(x),…, Fn(x)}. Then the number
of zeros in the interval (a, b) (each zero is counted with proper multi-
plicity) equals C(a)−C(b) minus an even non-negative integer.

Armed with this theorem, the following proposition holds.

Proposition A.1. Only one of the two roots for d (d=d1
F) of the flip

bifurcation boundary B(d)=0 is included between −1 and 1, while
the root d=d2

F is always larger than 1.

Proof. The proof uses the following line of reasoning. First, let us
rewrite the bifurcation curve (see Eq. (16) in the main text) at

image of Fig.�4
image of Fig.�3


Table 1
Threshold values and application of the Budan–Fourier theorem for the number of
zeros in the interval d∈(−1, 1).

12/5bzb2 4/5bzb2 zb4/5

−1 1 −1 1 −1 1

G(d) − + − + + +
G′(d) + + + − + −
G″(d) − − − − − −
Number of sign changes (C) 2 1 2 1 1 1
Variation (C(−1)−C(1)) 1 1 0

Table 2
Threshold values and application of the Budan–Fourier theorem for the number of
zeros in the interval d∈(−∞, ∞).

12/5bzb0

−∞ +∞

G(d) − −
G′(d) + −
G″(d) − −
Number of sign changes (C) 2 0
Variation (C(−∞)−C(∞)) 2

9 The quadratic utility function is the usual specification of preferences proposed by
Dixit (1979) and subsequently used, amongst many others, by Singh and Vives (1984),
Qiu (1997), Häckner (2000), Correa-López and Naylor (2004), Gosh and Mitra (2010),
Fanti and Meccheri (2011). The important feature of such a utility function is that it
generates a system of linear demand functions.
10 En passant, we note that this simplification is usual, e.g. Correa-López and Naylor
(2004), Gosh and Mitra (2010), Fanti and Meccheri (2011).
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which the positive fixed point q* looses stability through a period-
doubling bifurcation as follows:

B dð Þ :¼ −α a−wð Þd2 þ 4dþ 8−4α a−wð Þ ¼ 0: ðA:1Þ

Then, by denoting z=α(a−w), we define the following function:

G dð Þ :¼ −zd2−4zþ 4dþ 8: ðA:2Þ

By a simple inspection ofG(d), it is easy to establish that the discrim-
inant of G(d) is negative forz > 12

5 ¼ 2:41 and thus real solutions for d of
B(d) do exist if, and only if, zb 12

5 . Then, we find that G′(d)=−2zd+4
and G″(d)=−2z. Therefore, the following inequalities hold:

ið Þ G 1ð Þ>
b
0⇐z

b

>

12
5

; G′ 1ð Þ>
b
0⇐z

b

>
2; G″ 1ð Þb0 ; ðA:3Þ

iið Þ G −1ð Þ>
b
0⇐z

b

>

4
5
; G′ −1ð Þ > 0; G″ −1ð Þb0 : ðA:4Þ

Tables 1 and 2 resume the numerical results of the application of
the Budan–Fourier theorem. As is shown: (1) in the last row of
Table 1 only one root of d included between −1 and 1 does exist;
(2) in the last row of Table 2 two sign changes when d=−∞ do
exist; (3) by comparing the number of sign changes when d=−∞
and when d=−1, we observe that there exist no roots (one root)
for d included between −∞ and −1 when 12

5 > z > 4
5 (zb

4
5); therefore,

since from Table 1 we observe that there is one root (no roots) for d
included between −1 and 1 when 12

5 > z > 4
5 (zb

4
5), then we conclude

that for any 12
5 > z > 0 one root d>1 always exists.

It follows that since the Cournot–Nash equilibrium Eq. (9) of the
two-dimensional system Eq. (8.2) is stable for any d1

Fbdbd2
F, and

since −∞bd1
Fb1 and d2

F>1, then starting from a stability situation, the
Cournot–Nash equilibrium Eq. (9) can loose stability only when d
decreases beyond d=d1

F. Moreover, it can easily be ascertained that
d1
F=0 if α ¼ 2

a−w, d1
Fb0 for any 0bαb 2

a−w and d1
F>0 for any α > 2

a−w.
Q.E.D.

Appendix B

In this appendix we shortly describe the microeconomic founda-
tions that lead to the demand functions represented by Eqs. (2.1)
and (2.2) in the main text.
In addition to the duopolistic sector, a competitive sector that pro-
duces the numeraire good y exists.

We also assume the existence of a continuum of identical
consumers which have preferences towards q and y represented by
a separable utility function V(q; y), which is linear in the numeraire
good. The representative consumer maximises V(q; y)=U(q)+y with
respect to quantities subject to the budget constraint p1q1+p2q2+
y=M, where q=(q1, q2), q1 and q2 are non-negative and M denotes
the consumer's exogenously given income. The utility function U(q) is
assumed to be continuously differentiable and satisfies the standard
properties required in consumer theory (see, e.g., Singh and Vives,
1984, pp. 551–552). Since V(q; y) is separable and linear in y, there
are no income effects on the duopolistic sector. This implies that for a
large enough level of income, the representative consumer's optimisa-
tion problem can be reduced to choose qi to maximise U(q)−p1q1−
p2q2+M. Utility maximisation, therefore, yields the inverse demand
functions (i.e., the price of good i as a function of quantities):
pi ¼ ∂U

∂qi
¼ Pi qð Þ, for qi>0 and i={1, 2}. Inverting the inverse demand

system above gives the direct demand functions (i.e., the quantity of
good i as a function of prices): qi=Qi(p), where p=(p1, p2) and p1
and p2 are non-negative.

In order to have explicit demand functions for the goods and
services of variety 1 and 2, a specific utility function should be as-
sumed. We consider a simplified version of the model proposed by
Singh and Vives (1984), which is usually adopted to represent a
micro-founded demand system of differentiated products. On the
demand side of the market, the representative consumer's utility is
a quadratic function of two differentiated products, q1 and q2, and a
linear function of a numeraire good, y.9

Therefore, we assume that preferences of the representative
consumer over q are given by (see Eq. (1) in the main text):

U qi; qj
� �

¼ aiqi þ ajqj−
1
2

βiq
2
i þ βjq

2
j þ 2dqiqj

� �
; ðB:1Þ

where −1bdb1 represents the degree of horizontal product differ-
entiation. More in detail, if d=0, then goods and services of variety
1 and 2 are independent. This implies that each firm behaves as if it
were a monopolist in its own market; if d=1, then products 1 and
2 are perfect substitutes or, alternatively, homogeneous; 0bdb1 de-
scribes the case of imperfect substitutability between goods. The degree
of substitutability increases, or equivalently, the extent of product dif-
ferentiation decreases as the parameter d raises; a negative value of d
instead implies that goods 1 and 2 are complements, while d=−1
reflects the case of perfect complementarity.

If ai≠aj, then a demand asymmetry between firms i and j exists,
which can be interpreted as a quality difference between products
supplied by the two firms, as in Häckner (2000). This asymmetry
implies a vertical (quality) differentiation between the two products.
Since we are interested to exclusively analyse the dynamic role
played by the degree of horizontal differentiation (i.e., the parameter
d) we assume that ai=aj=a. Furthermore, we normalise the coeffi-
cients of the squared terms in the utility function (i.e., the slopes of
the inverse demand functions) to unity, that is βi=βj=1. Therefore,
the present utility specification slightly differs from that adopted by
Singh and Vives (1984), because the notation has been simplified
without loss of generality.10 Standard maximisation of utility function
(B.1) with respect to products of variety 1 and 2 straightforwardly
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determines the corresponding demand functions as given by
Eqs. (2.1) and (2.2) in the main text.
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